The Problem

Memes = powertful tool for spreading online hate on
fringe + mainstream sites

Poor performance of humans (84.50 auROC)
Transformers perform well; not a resolution

Multimodal + rely on cultural nuances — traditional

hate speech detection methods are ineffective
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Motivation

e Past work on hateful memes: fine-tuning large-scale
transtformers with little to no data preprocessing
o good performance, bad interpretability, don't
help human classifiers
e Our approach: interpretable models
o based on human cognition = reasoning for final
human classitiers

o simpler models (less computationally expensive)

Methodology

e Experimented with textual /image features based on
human insights

e Concatenation + embeddings, two classes of models
(decision tree + LSTM)
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Caption: A woman in a white shirt
and black tie.

Web Entities: [lhan Omar Politics
United States Member of Congress

Feature selection: motivation for
Urban Dictionary list of "dogwhistle”
words

{Models}

e Concatenation + embeddings

o tf-idf = decision tree w/ XGBoost
o DistilBERT — LSTM
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Results

ROC Curves
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Val. Test

Human

82.65

Non-transformer
Baselines

Text-only BERT
Late Fusion

65.08
64.75

Transformer Baselines  VILBERT CC
VisualBERT COCO

70.03
71.41

Our Models GBDT
LSTM

70.90
72.72

e Matches

transformer
baselines

Feature importances
= insights on co-
occurring features

conveying hatefulness

e Differentiates b/w hateful memes and confounders

+ identities nontrivial hateful memes (see paper)

Takeaways

There may be promise in a joint human-Al approach

Al flags memes and provides reasoning

How can we practically facilitate human-Al

collaboration?

How can we minimize human bias in hateful meme

detection?
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