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1. The Kneser Graph

Some of the most enlightening proofs in mathematics are those which combine two seemingly
unrelated subfields for surprising insights. One great such proof is the proof of Kneser’s
conjecture, which deals with coloring a special type of graph called the Kneser graph. The
proof of Kneser’s conjecture, which was found by László Lovász, uses the Bursuk-Ulam
theorem from topology, and was refined by Joshua Greene. [1]. In this paper, we will
present Greene’s proof of Kneser’s conjecture and prove several related extensions: Dolnikov’s
theorem and Schrijver’s theorem.

Definition 1.1 (Kneser graph). A Kneser graph is a graph of the following form, for n ≥
k ≥ 1: its vertices are k-subsets of [n], and vertices corresponding to disjoint subsets are
adjacent, i.e. there is an edge between them.

Figure 1. A well-known Kneser graph: K(5, 2), or the Petersen graph.

Kneser graphs have some interesting properties that combine graph theory and finite sets;
consider, for example, the independence number:

Remark 1.2. The independence number of a graph is the maximum size of a set of vertices
that are pairwise edgeless; for Kneser graphs, this number is

(
n−1
k−1

)
.

We know this from the Erdos-Ko-Rado theorem, which we have covered in class and deals
with the number of elements in an intersecting family of k-subsets.
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(a) K(6, 2) (b) A coloring

Figure 2. The Kneser graph K(6, 2) and its coloring.

Also, Kneser graphs with k = 1 are just the complete graphs with n vertices: each sub-
set is a single element from [n], and it is disjoint from all of the other subsets. Therefore,
K(n, 1) is a complete graph.

Now, if n < 2k, any two k-subsets must intersect, so all vertices of the corresponding Kneser
graph are disjoint. Therefore, the only nontrivial Kneser graphs are those where n ≥ 2k; we
will assume this from now on.

Definition 1.3. The chromatic number of a graph G with vertex set V , denoted by χ(G),
is the minimum number of colors needed for a valid coloring of G; that is, the smallest value
m such that there is a mapping V → [m] where adjacent vertices are colored differently.

A coloring is a partition of the vertices into disjoint sets V1 ∪V2 ∪ . . .∪Vk such that each set
is edgeless; in terms of Kneser graphs, this is a partition of k-subsets of [n] into disjoint sets
V1∪V2∪. . .∪Vk such that each Vi is an intersecting family of k-sets, because 2 subsets are con-
nected by an edge in a Kneser graph if they are disjoint. Let us write n = 2k+d where d ≥ 0.

There is an easy coloring of K(n, k) that uses d+2 colors. It goes like this. For 1 ≤ i ≤ d+1,
let Vi be the set of all subsets with i as its smallest element (these are obviously intersecting).
All remaining subsets are subsets of {d + 2, d + 3, . . . 2k + d}, which has 2k − 1 elements;
therefore, they are intersecting and can be assigned the color d+2. So, we have shown that
χ(K(n, k) ≤ d+ 2.

Example. Let’s color a Kneser graph with this method. We will color K(6, 2), which is shown
in Figure 2. We have n = 6 and k = 2, so d = 2 and we will use 4 colors.

Kneser’s conjecture states that this number d+ 2, is the right number; ie, that there are no
colorings of Kneser graphs with fewer colors.

2. Coloring the Kneser Graph

Conjecture 2.1 (Kneser’s conjecture). We have χ(K(2k + d, k)) = d+ 2.
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This conjecture was proposed, but not proved, by Kneser when he introduced the concept
of Kneser graphs in 1955. A first topological proof was found by László Lovász in 1978, and
has been refined in the years since.

We showed in Section 1 that the chromatic number is at most d + 2. Therefore, we must
show that χ(K(2k + d, k)) ≥ d+ 2, or alternatively, that χ(K(2k + d, k)) ̸< d+ 2.

We rephrase the conjecture as an existence question: we must show that if k-subsets of
[2k + d] are partitioned into d + 1 classes V1 ∪ V2 ∪ . . . ∪ Vd+1, at least one of the classes
contains a pair of disjoint subsets, as this would make the coloring invalid.

The insight that lead to the proof of this theorem was its connection to the Borsuk-Ulam
theorem, which deals with the d-dimensional sphere Sd in Rd+1.

Theorem 2.2 (Borsuk-Ulam theorem). Given a continuous map f : Sd → Rd, there is at
least one pair of antipodal points x∗,−x∗ that are mapped to the same point f(x∗) = f(−x∗).

We will not prove this theorem, as it is out of the scope of this paper; however, we will
restate it slightly to aid in our proof.

Theorem 2.3 (Lyusternik–Shnirel’man theorem). If Sd is covered by the sets U1 . . . Ud+1,
such that the first d sets are either open or closed, then one of Ui’s contains a pair of antipodal
points x∗ and −x∗.

For Kneser’s conjecture, we only need the case where the first d sets are open, but we prove
the full conjecture regardless.

Proof. Say we have a covering of Sd, as stated; we will assume that none of the Uk’s have
antipodal points. Define a map f : Sd → Rd:

f(x) = (d(x, U1), d(x, U2), . . . d(x, Ud))

where d is the minimum Euclidean distance from x to any point in the set Ui; because dis-
tance is a continuous map, f itself is continuous as well. Then, by the Borsuk-Ulam theorem,
f contains a pair of antipodal points x∗,−x∗ such that f(x∗) = f(−x∗).

We have assumed that Ud+1 does not have any antipodes, so one or more of x∗,−x∗ must be
in some Uk. We assume that this is x∗ (switching the two antipodes if needed). Then, we
have d(x∗, Uk) = 0, and because f(x∗) = f(−x∗), d(−x∗, Uk) = 0 as well.

If the set Uk is closed, then d(−x∗, Uk) = 0 means that −x∗ ∈ Uk, which is a contradic-
tion. If Uk is open, then −x∗ ∈ Uk, the closure, or the smallest closed set containing Uk.
Ūk ∈ Sd \ (−Uk), because this is a closed set containing Uk. But then −x∗ lies in Sd \ (−Uk),
so it cannot lie in −Uk, so x∗ cannot lie in Uk; this is also a contradiction. □

The original proof of Kneser’s conjecture used the Lyusternik-Shnirel’man theorem along
with Gale’s lemma, which deals with arrangements of n points on Sd such that each hemi-
sphere contains k points. However, a further refined proof was found that relied on n points
in general position instead. We define the notion of general position below.

Definition 2.4 (General position). 2k + d points on Sd are said to be in general position if
no d+ 2 of the points lie on a hyperplane through the center of the sphere.
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We first present this refined proof of the conjecture, which also generalizes easily to prove
Dolnikov’s theorem; then, we will present a second proof using Gale’s lemma and a conse-
quence known as Schrijver’s theorem.

3. Proof of Kneser’s conjecture

We begin by proving Kneser’s conjecture, relying on the Lyusternik-Shnirel’man theorem as
its main line of reasoning.

Proof. We start with our ground set of 2k + d points in general position on Sd+1. Assume
that the vertex set V , which is made up of all k-sets of this ground set, can be partitioned
into d+1 intersecting sets corresponding to color classes, as is needed for a d+1-coloring of
a Kneser graph. Our job is to show that at least one of these classes contains 2 disjoint sets
A,B, which would be a contradiction – color classes must be intersecting families in order
for their vertices to not be connected. We set, for i = 1, 2, . . . d+ 1,

Oi =
{
x ∈ Sd+1 : the open hemisphereHx

with pole x contains a k -set from Vi} .
Each Oi, then, is an open set, and the open sets O1, O2, . . . Od plus the closed set

C = Sd+1 \ {O1 ∪O2 ∪ . . . ∪Od}
form a covering of Sd+1. By Lyusternik–Shnirel’man, one of these sets contains a pair of
antipodal points x∗,−x∗. However, it cannot be C, because if it were, Hx∗ and H−x∗ would
contain less than k points, meaning that more than d + 2 points would be on the equator
formed by these hemispheres, which is a contradiction since the points are in general position.
So, some Oi contains a pair of antipodal points, and there are k-sets A and B from the same
color class in separate hemispheres Hx∗ and H−x∗ . But because the hemispheres are open,
they are disjoint, meaning A and B are disjoint, which completes the proof.

□

The proof of Kneser’s conjecture is a pretty nice result about graph theory and finite sets that
uses one of the staple results from topology. Now, we will see an extension to hypergraphs
known as Dolnikov’s theorem.

4. Dolnikov’s theorem

Dolnikov’s theorem deals with the coloring of Kneser hypergraphs, the notion of which comes
naturally from the definition of ordinary Kneser graphs; its proof follows similar topological
lines of reasoning as the proof of Kneser’s conjecture. The content in this section comes from
[2]. We begin by defining a hypergraph.

Definition 4.1. A hypergraph, or set system, is a collection of subsets of some ground set
E, where each subset is called a hyperedge. For our purposes, we will use [n] as our ground
set.

Clearly, the Kneser graph on a set system F can be defined naturally: we have

K(F) = (F , {(A,B) : A,B ∈ F , A ∩B = ∅}),
ie, there is an edge between disjoint hyperedges (subsets).
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Definition 4.2. A hypergraph is m-colorable if there is a mapping E → [m] such that each
hyperedge contains vertices of at least two colors.

Definition 4.3. The 2-colorability defect of a hypergraph F , cd2(F), is the smallest number
of vertices that must be removed to make the hypergraph 2-colorable.

Example. Consider the following hypergraph H, which can be 2-colored.

(a) H (b) A coloring

Figure 3. The hypergraph H and its coloring.

Theorem 4.4 (Dolnikov). For a hypergraph F , we have

χ(K(F)) ≥ cd2(F).

Equality does not necessarily hold, and there is no straightforward way to determine cd2(F).
However, the proof of Dolnikov’s theorem is similar to the proof of Kneser’s conjecture.

Proof. Suppose χ(K(F)) = d; again, take an arrangement of E, the ground set of F , in
general position on Sd+1. As in the previous proof, we define the sets Oi and C by

Oi =
{
x ∈ Sd+1 : the open hemisphereHx

with pole x contains a k -set from Vi} .

and

C = Sd+1 \ {O1 ∪O2 ∪ . . . ∪Od}.
By the Lyusternik-Shnirel’man theorem, one of these d+ 1 sets contains a pair of antipodal
points. Suppose this set is one of O1 . . . Od. Then, there would be two k-sets from the same
color class Vi in opposite, and thus, disjoint, hemispheres. Therefore, these two k-sets would
be disjoint, which is a contradiction considering how we have constructed the color classes.

Therefore, C contains two antipodal points, and there is no set A ∈ F in either hemi-
sphere Hx∗ or H−x∗ . There are at most χ(K(F)) points on the equator; removing them and
the sets in F containing them, we obtain a new hypergraph F ′, in which all sets touch both
hemispheres Hx∗ and H−x∗ . F can be colored by 2 colors corresponding to the hemispheres,
so the chromatic number of K(F) is at least the 2-colorability defect of F . □
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Dolnikov’s theorem is significantly more powerful than Kneser’s conjecture, as it applies to
all hypergraphs, which include subsets of all possible sizes, rather than graphs of k-subsets.
Next, we will look at a clever lemma, Gale’s lemma, and use it to prove another related
result.

5. Gale’s lemma and Schrijver’s theorem

Here, we present a separate proof of the Kneser conjecture based on Gale’s lemma; this
proof yields another extension of the theorem known as Schrijver’s theorem. To motivate
this, we first present Schrijver’s theorem, which relies on the notion of a stable subset, and
of the Schrijver graph. The material in this section comes from Jiri Matousek’s Using the
Borsuk-Ulam Theorem [3].

Definition 5.1 (Schrijver graph). A subset S of [n] is stable if it does not contain any
neighboring elements modulo n (ie, if it contains the element i, it does not contain the
element i− 1 or i+ 1 modulo n). We denote the family of stable subsets by [n]stab, and the
Schrijver graph S(n, k) is the Kneser graph on the set of stable k-subsets of [n]; in other
words, an induced subgraph of K(n, k).

Example. The following graph is the Schrijver graph S(6, 2), which is clearly an induced
subgraph of K(6, 2).

(a) The induced Schrijver
graph of K(6, 2)

(b) S(6, 2)

Theorem 5.2 (Schrijver’s theorem). χ(S(n, k)) = χ(K(n, k)) = n− 2k + 2 = d+ 2.

Schrijver’s theorem is quite interesting, as it states that even if as many as half of the vertices
of a Kneser graph are removed, its chromatic number remains the same. In order to prove
Schrijver’s theorem, we will first state and prove Gale’s lemma.

Theorem 5.3 (Gale’s lemma). For d ≥ 0 and k ≥ 1, 2k + d points can be arranged on Sd

so that each open hemisphere of Sd contains at least k of them.
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Proof. We will prove that there exist 2k + d points v1 . . . v2k+d in Rd+1 such that each open
half-space (the open set produced by considering one half of the division of Rd+1 by a
hyperplane) whose boundary passes through the origin. Define the moment curve γ̄ as

γ̄ = {(1, t, t2, . . . , td) ∈ Rd+1 : t ∈ R}.

We label any 2k+ d points on γ̄ as w1 . . . w2k+d in order of their occurrence on γ̄, and points
are referred to as even or odd depending on their index. Also, we define vi = (−1)iwi.

Let h be a hyperplane passing through the origin, and h+ and h− be the resultant open
half-spaces. We have to show that for both h+ and h−, contain at least k points from the
vi’s. For the half-space h+, because vi = −wi for odd i, and vi = wi for even i, we have to
show that the number of even wi’s in h+ plus the number of odd wi’s in h− is at least k.

Next, we claim that γ̄ does not intersect h in more than d points, and that if it has d
intersections with h, it crosses to opposite sides of h at each intersection. This has the
following justification: if h has the equation 1 + a1x1 + a2x2 . . . + adxd = b, then if a point
γ̄(t) lies in h, we have 1 + a1t + a2t

2 . . . + adt
d = b, and we have a polynomial equation

p(t) of degree d in t, which obviously has at most d solutions. If there are indeed d distinct
intersections, all roots of the p(t) have multiplicity 1 and p(t) changes sign at each root,
meaning γ̄ crosses between sides of h at each intersection.

We consider a hyperplane h through the origin, and move it continuously to contain d points
of the set W = {w1 . . . w2k+d}, keeping the points of W on the same side of h throughout.
This can be done using the following process: we start with some points of W , and to add
more points, we rotate h around the origin and a (d−2)-flat (essentially a (d−2)-dimensional
subset of Rd+1) until h includes another wi; repeat until h contains d points of W .

So, we can assume that h intersects γ̄ in d points, all in W . We will define W+ = W ∩ h,
and W− = W \W+. Each point in W+ represents a place where γ̄ crosses from one side of
h to the other.

We color each wi ∈ W− black if it is even and lies in h+ or if it is odd and lies in h−;
otherwise, it is colored white. Clearly, the black and white points of W− alternate.
Take two consecutive points w and w′ of W−, and all the j points between them. If j is even,
both w and w′ are in the same half-space, and are of different colors, since one is even and
the other is odd. If j is odd, then w,w′ are in different half-spaces but are also of different

colors. So, either way, there are at least ⌊ |W−|
2

⌋ ≥ k black points, proving Gale’s lemma. □

With Gale’s lemma, we can present another proof of Kneser’s conjecture, which is due to
Lovász, that implies Schrijver’s theorem.

Proof. Consider a Kneser graph K(n, k), and d = n − 2k. Consider a set X ⊂ Sd in the
arrangement specified in Gale’s lemma, where the points in X correspond to [n].

Consider a d + 1-coloring of K(n, k) and define O1 . . . Od+1 in the usual fashion. Then,
the Oi’s are an open cover of Sd, since each open hemisphere contains at least one k-set
(by Gale’s lemma). By Lyusternik-Shnirel’man, one of these open hemispheres has a pair of
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Figure 4. γ̄ and the coloring of the wi’s.

antipodal points, and this leads to the same contradiction as before, because there are two
k-sets of the same color in disjoint open hemispheres. □

This proof follows the same line of reasoning as the previous ones, but leads to Schrijver’s
theorem.

Theorem 5.4 (Schrijver’s theorem). χ(S(n, k)) = χ(K(n, k)) = n− 2k = d.

Proof. The proof of Schrijver’s theorem proceeds exactly as the second proof of Kneser’s
conjecture, with a slight modification regarding Gale’s lemma: each open hemisphere should
contain a stable k-set. Indeed, this is possible under our proof of Gale’s lemma: a stable set
is formed by the black points if γ̄ is numbered according to [n].

□
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